

The cluster

The ZeroPollution4Water Cluster is an initiative originated from the coalition of seven different projects funded from two Horizon Europe 2022 calls aiming at:

- Preventing groundwater contamination and protecting its quality against harmful impacts of global and climate change.
- Securing drinking water quality by protecting water sources against pollution, providing innovative monitoring and treatment solutions, and ensuring safe distribution.

Aims

Focused on the European Union's Zero Pollution ambition and the European Green Deal, the cluster aims to improve water quality, safeguard drinking water sources, and protect groundwater against the harmful impacts of global and climate change. By leveraging the collaboration and synergies between the collaborative projects funded through Horizon Europe, the cluster aims to develop advanced preventive and mitigating strategies, effective risk assessment and management systems, and innovative monitoring and treatment solutions for drinking water and groundwater.

Working Group: From R&I to Impact

This document was produced within WG6, led by Daniela Meilmann (Leader during 2023-2025), with support from Paolo Roccaro and Florencia Gómez del Junco García. The group focuses on facilitating the deployment of cutting-edge technologies, governance models, and best practices in the field of zero pollution for drinking water and groundwater.

Further Information: www.zeropollution4water.eu

Contact Us: Andrea Rubini, Water Europe Director of operations: andrea.rubini@watereurope.eu

Author: Gabry Ostuni.

Editor: Daniela Meilmann.

Collaborators and Reviewers: Evgeny Bulatov, Peter Behnisch, Florencia Gómez del Junco García, Luisa Duraes, Rui C Martins, Miguel Capilla Lloris.

Designer: FEUGA.

Date: November 2025.

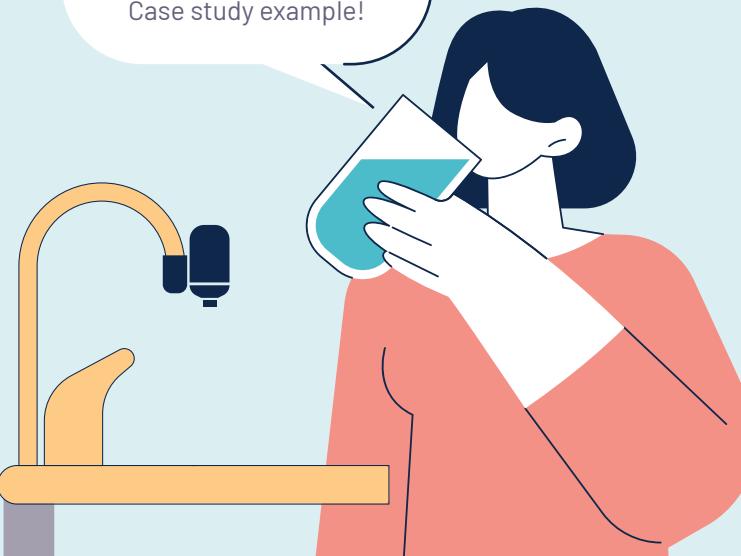
The views expressed are solely those of the author. This list is not exhaustive and does not aim to cover all possible perspectives.

KEY STEPS FOR MARKET UPTAKE OF WATER TECHNOLOGIES FOR THE DRINKING WATER SECTOR

Coordinated by

Technology & Innovation

Funded by
the European Union


Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Innovative monitoring and control technologies are vital for protecting water quality and public health, but adoption is often slow due to fragmented regulations, unclear business cases, and limited stakeholder awareness. Many technology developers or technology providers, come from engineering or academic backgrounds and may lack strong market engagement skills, while lab-scale innovations typically require a decade or more to reach maturity.

This guidance outlines key practical steps and recommendations for market uptake. While the guide is generic and can be adapted for most technologies, you can find an example specifically applied to the **the reagent-free THM analyser** through the **QR code**.

Scan the QR code and check out an practical Case study example!

How do I use this guide?:

Follow each step and further investigate and provide an analysis for your technology. These are the key steps that need consideration for market uptake.

Who is it for?:

Researchers who participate in technology transfer, Technology Officers, Business Developing Managers, Sales and Marketing Managers, Innovation & Technology Transfer Manager, Commercial Managers.

What does it include?:

Checklists and recommendations.

This short guide will provide the basic elements needed to consider once you decide to take the technology developed to the market. This guide presents a structured set of non-binding, advisory recommendations to accelerate the market uptake of innovative water treatment technologies.

What do you need?:

The following steps are necessary to provide you with a strong strategy that will help your technology in a long and medium term.

Step 1 Market Analysis

Step 2 Barriers

Step 3 Drivers

Step 4 Business Case

Step 5 Sales and Marketing Activities

Step 6 Regulatory Guidance

Step 7 Standards and Protocols

Step 8 Align with the business strategy

KEY STEPS FOR MARKET UPTAKE

Step 1

Market Analysis

The first step is to assess market trends, opportunity size, key stakeholders, and buying dynamics for the technology. The global market for online water-quality monitoring is expanding, driven by Industry 4.0, automation, and tighter water regulations. Find out who are your clients, what are their needs. Carry out an analysis of your customers.

Step 3

Understanding your drivers

- Regulatory Pressure.
- Operational Efficiency.
- Commercialisation.
- Standardisation.
- Direct application.
- Opportunities to maximise return on investment.
- Strengthen market.
- Policy uptake.
- Sector competitiveness.
- Deliver tangible benefits to end-users and society at large.
- Further research.

Step 5

Sales and marketing activities

- **Pilot Units:** Co-fund pilots with water utilities to generate real-world performance data and case studies that open the market.
- **Innovation Hubs:** Use pilots to present at water research centres, gaining early feedback and refining products.
- **Exhibitions:** After pilots, showcase results at major trade fairs (e.g., AQUATECH) and present case studies in conference sessions.
- **Online Presence:** Invest in a strong website, brochures, and professional social media for continuous visibility.
- **National Sales:** Customer visits, open days, pilot-site tours, and articles in trade magazines.
- **International Sales:** Leverage distributors, conferences, and webinars for broader reach.
- **Case Study Repository:** Maintain a database of global deployments with metrics and lessons learned.
- **Communication:** Keep clients and users.

Step 7

Standards and Protocols

- **Reliable Data:** Define simple, repeatable testing (sampling, lab checks, analysis). Pair solid data with active outreach.
- **Guidance:** Provide clear reports to build end-user confidence.
- **Standards:** Choose standards and protocols that support customer confidence. Find out which standard is most applicable to your product.
- **Models:** Use models such as the KTH Innovation Readiness Model to track progress over time or SWOT analysis for strength and weakness analysis.
- **R&D:** Focus on International R&D leaders from Universities, Industry and Governments.
- **Trends:** Market trends and the consequences in our relevant markets will affect the standard or protocol to use.

Step 2

Barriers

- **Standardisation Gaps:** No unified ISO/ASTM protocols exist, leaving utilities dependent on manufacturer data or costly in-house validation.
- **Regulatory Uncertainty:** Regulations set limits for certain DBPs and PFAS but rarely mandate continuous monitoring, discouraging investment.
- **Economic Hurdles:** High upfront costs and unclear ROI slow adoption, especially when real-time data requires additional treatment measures.
- **Maturity of the Market.**
- **Supply chain and availability of raw materials.**
- **Inter and intra-laboratory analysis:** Difficulty in standardisation of results.

Step 4

Business case

- **Background:** Provides the background of the business issue, the methods used to examine it, and identifies key stakeholders.
- **Problem/Opportunity Statement:** Clearly defines the business problem or opportunity that the project aims to address.
- **Options Analysis:** Explores different solutions, including the option of taking no action, and provides reasons for choosing the preferred option.
- **Benefits, Costs, and Risks:** Includes a detailed analysis of the expected benefits, financial costs (including resources like personnel, software, and hardware), and potential risks associated with the project. A cost-benefit analysis is often included here to show the potential return on investment (ROI).
- **Financial Case:** Assesses the project's affordability and includes a detailed budget and potential contractual arrangements.
- **Summary:** Provides a high-level overview of the idea, costs, and key benefits.
- **Inter and intra-laboratory analysis:** Difficulty in standardisation of results.
- **Financing:** Investment needs and sources, roadmap, expected ROI.
- **Publications:** can be expensive and time consuming for SME.
- **Intellectual Property:** This is crucial to secure competitive advantages and to generate revenue streams. The IP strategy may reduce tax liability and will serve as a source of competitive intelligence and mostly to avoid and mitigate relevant risks.

Step 6

Regulatory Guidance

- **Policy outreach:** Engage with policy makers and policy briefs.
- **Regulation:** Leverage customer/regulator contacts. Keep ahead of the regulation and check what is in the pipeline to use it as an opportunity.
- **Collaboration:** Support white papers with universities, join working groups, and engage stakeholders at national and international levels to push adoption into regulations.
- **Press release:** Keep up with policy recommendations both at national and European level.

Step 8

Align with the overall business strategy

This step includes all the previous steps and should highlight the product's specific benefits, making it easier to build effective materials. The business case for the technology should fit within the overall company's business strategy, in particular paying attention to IPR, finance, forecasting and ROI, as well as timeline for product sales as well as the environmental sustainability of the technology. Commit to a 3-5 strategy.