

Technology Transfer and Uptake From Scientific Discovery to Commercial Product

Ceramic Passive Sampler (CPS) and AWA Monitoring

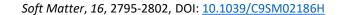
Presented by

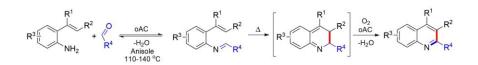
Evgeny Bulatov

IDAEA-CSIC // AWA Monitoring
Barcelona, Spain
November 11, 2025

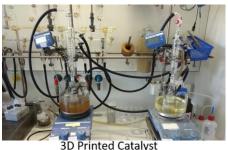
Outline

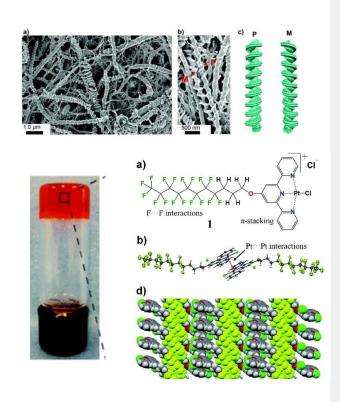
- 1. Me, CPS, and AWA Monitoring
- Me: background and motivation
- Ceramic Passive Samplers (CPS)
- 2. Technology Transfer: From Scientific Discovery to Commercial Product
- Scientist's vs. user's perspective
- Industry driven research vs. market education
- 3. Technology Transfer Process: Asking the Right Questions
- The KTH readiness model: TRL, BRL, etc.
- Creation of AWA Monitoring: financial hurdles, from prototype to product, scaling, long-term vision

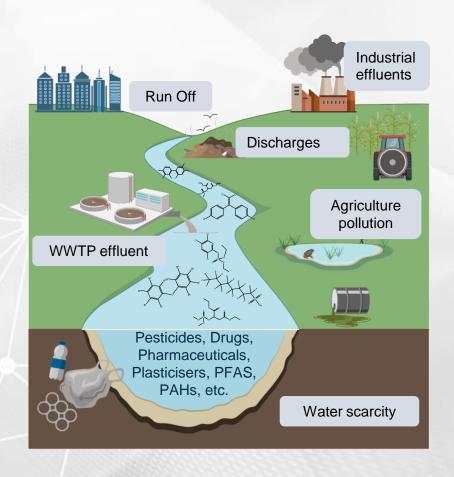




Me: background and motivation


Adv. Synth. Catal., 363, 3775-3782, DOI: 10.1002/adsc.202100711

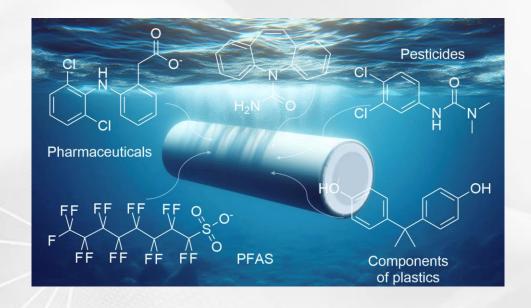


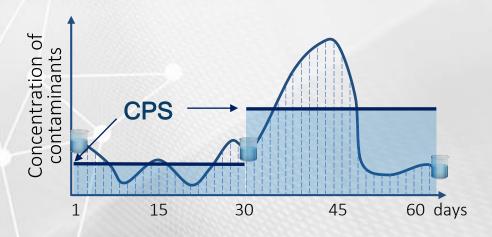


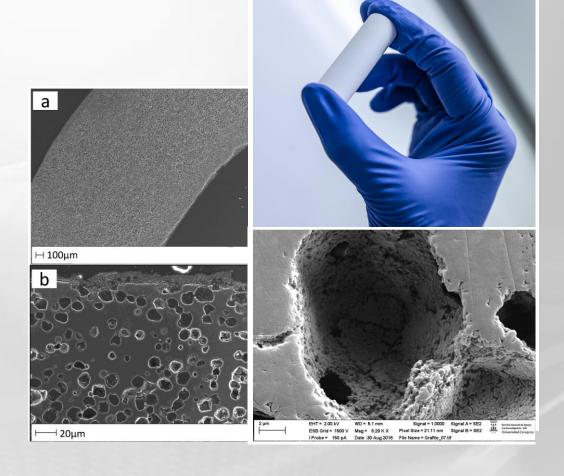
10 years of academic experience in 6 groups and 4 countries

20 publications in organic chemistry, inorganic chemistry, and materials science

Ceramic Passive Samplers (CPS)


Emerging contaminants


80,000 – 350,000 chemicals on the market + 2,000/year new chemicals approx.


- S. Brander, One Earth 2022 5, 316
- Z. Wang et al., Environ. Sci. Technol. 2020 54, 2575

Ceramic Passive Samplers (CPS)

Ceramic Passive Samplers (CPS) and AWA Monitoring

Outline

1. Me, CPS, and AWA Monitoring

- Me: background and motivation
- Ceramic Passive Samplers (CPS)

2. Technology Transfer: From Scientific Discovery to Commercial Product

- Scientist's vs. user's perspective
- Industry driven research vs. market education

3. Technology Transfer Process: Asking the Right Questions

- The KTH readiness model: TRL, BRL, etc.
- Creation of AWA Monitoring: financial hurdles, from prototype to product, scaling, long-term vision

The Researcher's (Deep Tech Innovator's) Perspective

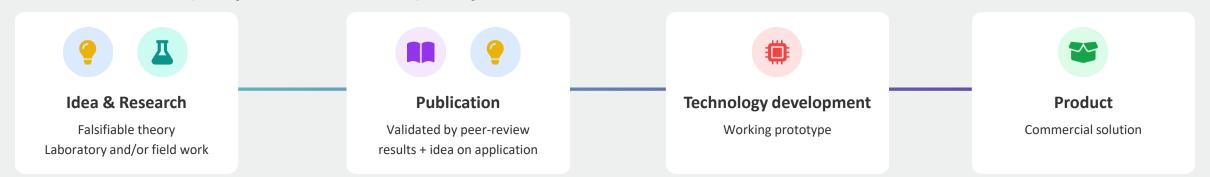
Idea & Research

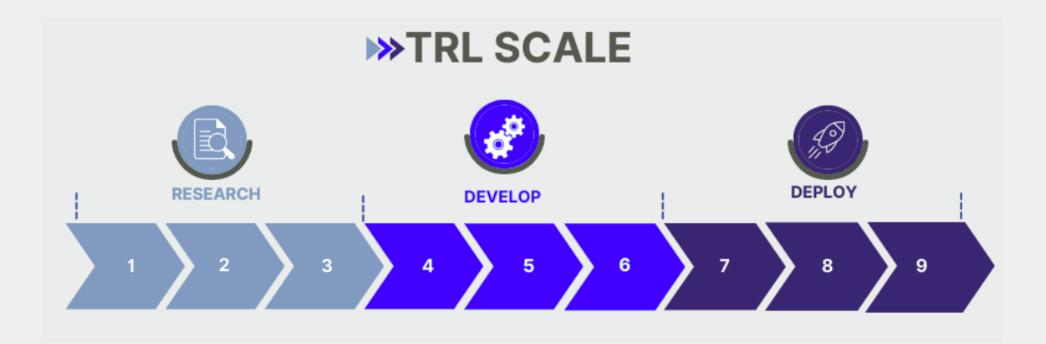
Falsifiable theory
Laboratory and/or field work

Publication

Validated by peer-review results + idea on application

Technology development


Working prototype



Product

Commercial solution

The Researcher's (Deep Tech Innovator's) Perspective

The Researcher's (Deep Tech Innovator's) Perspective

Falsifiable theory
Laboratory and/or field work

Publication

Validated by peer-review results + idea on application

Technology development

Working prototype

Product

Commercial solution

The User's Perspective

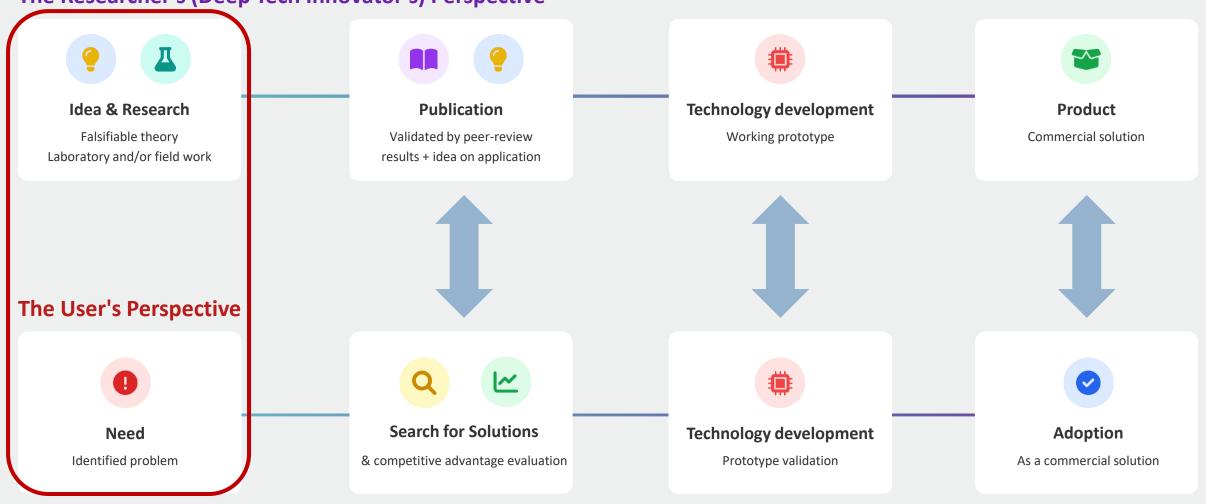
Need

Identified problem

Search for Solutions

& competitive advantage evaluation

Technology development


Prototype validation

Adoption

As a commercial solution

The Researcher's (Deep Tech Innovator's) Perspective

The Researcher's (Deep Tech Innovator's) Perspective

Industry driven research

The User's Perspective

Need

Identified problem

Publication

Validated by peer-review results + idea on application

Search for Solutions

& competitive advantage evaluation

Technology development

Working prototype

Technology development

Prototype validation

Product

Commercial solution

Adoption

As a commercial solution

The Researcher's (Deep Tech Innovator's) Devenoctive

Idea & Research

Falsifiable theory Laboratory and/or field work

Market education

The User's Perspective

Need

Identified problem

IF I HAD ASKED MY CUSTOMERS WHAT THEY WANTED, THEY WOULD HAVE SAID A FASTER HORSE.

ent

ent

Product

Commercial solution

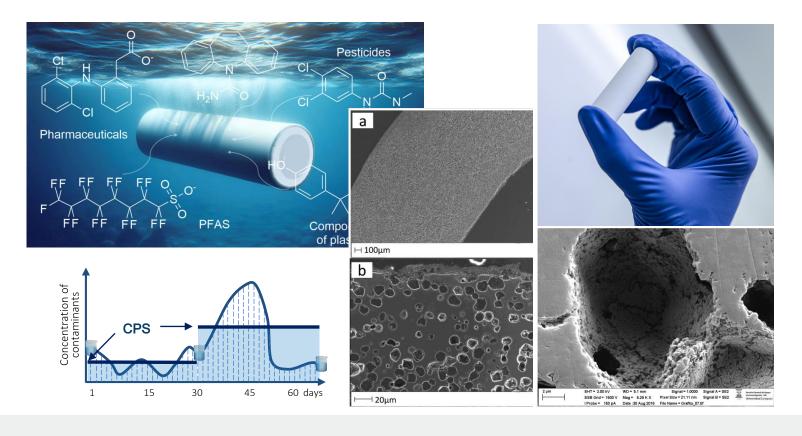
Adoption

As a commercial solution

The Researcher's (Deep Tech Innovator's) Perspective

Idea & Research

Falsifiable theory
Laboratory and/or field work


The User's Perspective

Need

Identified problem

Transition from the technology...

The Researcher's (Deep Tech Innovator's) Perspective

Idea & Research

Falsifiable theory
Laboratory and/or field work

The User's Perspective

Need

Identified problem

... to value proposition:

Detecting points of pain:

- How are you planning to prove meeting the requirements of Directive (EU)
 2024/3019 on urban wastewater treatment? (at least 80% removal of CECs)
- Are the data from your monitoring campaigns sufficient to take decisions? E.g.,
 - Which hospital is the most contaminating in the city?
 - What is the performance of the wetland wastewater treatment?
 - Do you know where the contamination come from?

Stakeholder map, map of channels, business model (canvas), roadmaps...

The Researcher's (Deep Tech Innovator's) Perspective

The Researcher's (Deep Tech Innovator's) Perspective

Idea & Research

Falsifiable theory Laboratory and/or field work

Publication

Validated by peer-review results + idea on application

Technology development

Working prototype

Product

Commercial solution

The User's Perspective

Need

Identified problem

Search for Solutions

& competitive advantage evaluation

Technology development

Prototype validation

Adoption

As a commercial solution

Outline

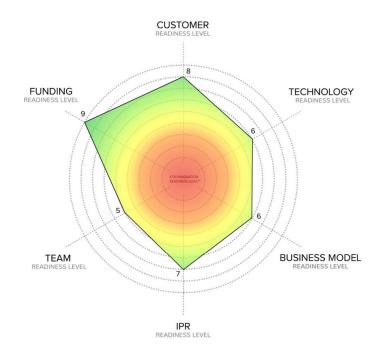
1. Me, CPS, and AWA Monitoring

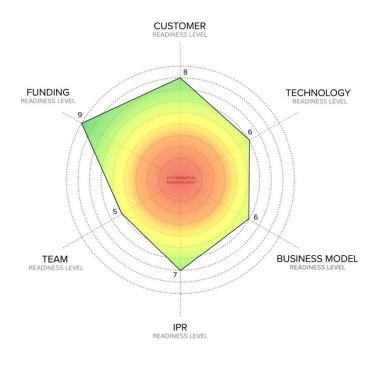
- Me: background and motivation
- Ceramic Passive Samplers (CPS)

2. Technology Transfer: From Scientific Discovery to Commercial Product

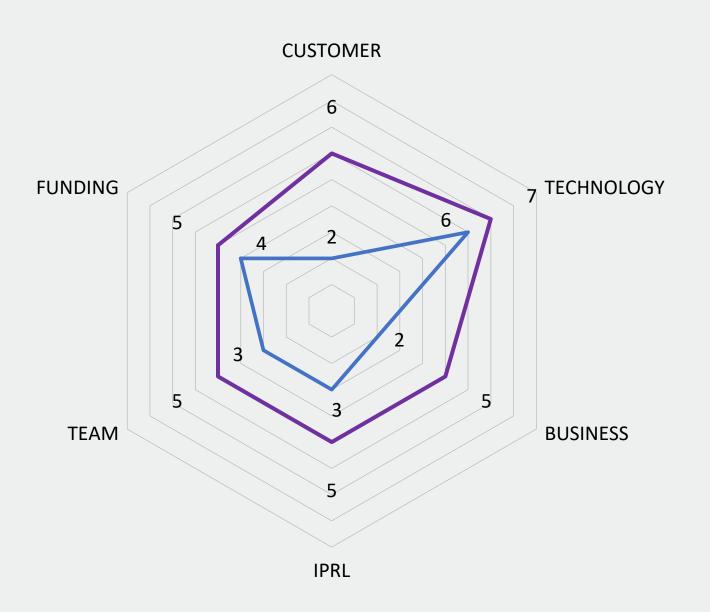
- Scientist's vs. user's perspective
- Industry driven research vs. market education

3. Technology Transfer Process: Asking the Right Questions


- The KTH readiness model: TRL, BRL, etc.
- Creation of AWA Monitoring: financial hurdles, from prototype to product, scaling, long-term vision


The KTH Innovation Readiness Model[™]

kthinnovationreadinesslevel.com


Sustainable business model proven to meet internal and external expectations on profit, scalability and impact over time. Sales and metrics show that sustainable business model is viable. Viability of sustainable business model (pricing, revenue model, etc.) validated by initial commercial sales. Full sustainable business model tested on customers, partners, suppliers (e.g. by test sales), calculations show economic viability. Key assumptions in sustainable business model tested on market. First calculations indicating economically viable business model. First assessment indicating environmental and social sustainability. Description of sustainable business model and target market(s), including competition. BRL First hypothesis of possible business concept (in any format) and identified overall market potential and competition. BRL No or unclear hypothesis of possible business idea, market potential, and competition. Sustainable business model = Revenue ≥ Cost (over time) AND Positive contribution to the environment and society > Negative contribution to the environment and society (over time)

The KTH Innovation Readiness ModelTM

kthinnovationreadinesslevel.com

Sustainable business model proven to meet internal and external expectations on profit, scalability and impact over time. Sales and metrics show that sustainable business model is viable. Viability of sustainable business model (pricing, revenue model, etc.) validated by initial commercial sales - Received feedback on revenue side of business model (e.g. revenue model, pricing, etc.) from a few potential customers or persons with market knowledge (experts) Received feedback on cost side of business model (e.g. production, supply chain, etc.) from a few external partners/suppliers/experts - Key measures to increase positive and decrease negative environmental and social contribution specified in business model (see KTH IRL user guide) Updated P&L projection based on market feedback indicates economic viability Target market description (target segment(s), TAM, SAM, SOM, and competitive analysis) updated based on market feedback First hypothesis of possible business concept (in any format) and identified overall market potential and competition. BRL No or unclear hypothesis of possible business idea, market potential Sustainable business model = Revenue ≥ Cost (over time) AND Positive contribution to the environment and society > Negative contribution to the environment and society (over time)

2023

2025

Milestones

Skills / assets

Scale-up funding by partner Business development support from CSIC

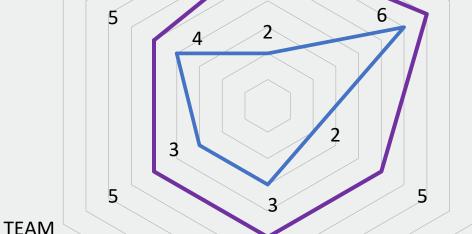
- (-) private funding
- (-) constituted company
- (\pm) investment management

Engaged with several labs and projects

- (+) Communication (languages)
- (\pm) Navigation in the water industry
- (±) Navigation in legislation

2023 ———

2025 ——


Milestones

Skills / assets

FUNDING

External team formed (partially contracted)

- (+) Network outside of the bubble
- (-) Vision of growth and corporate structure
- (-) Industrial doctorate
- (-) Platform developer
- (-) Finance part-time

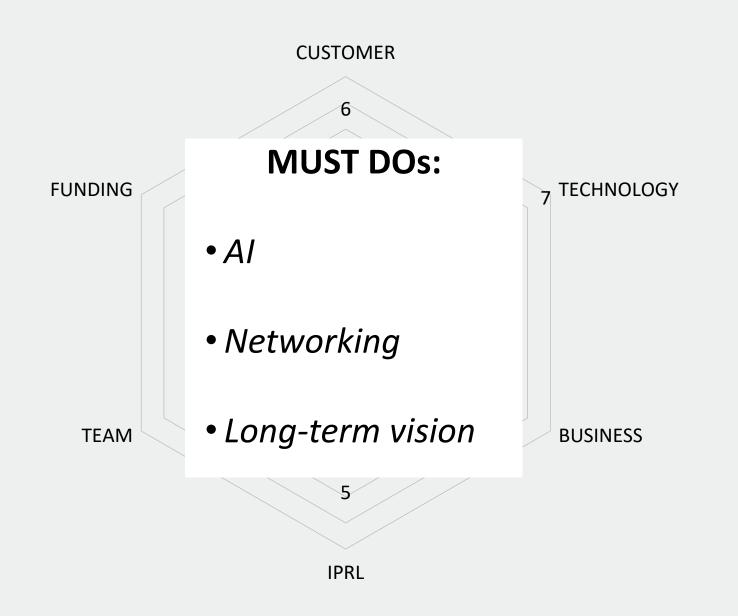
CUSTOMER

TECHNOLOGY

CPS production scale-up Running validation vs. certified methods

- (+) Ceramics & material characterization
- (+) Analytical chemistry
- (-) Quality assurance

BUSINESS


Defined scalable product offering (CPS + externalized services + data platform)

- (-) Channel validation
- (±) Pricing strategy & sales plan

Focus in the trademark + secret, agreement with partners

 (\pm) Long term exploitation vision

IPRL

AIIA Monitoring

Sílvia Lacorte
Jorge Silva
Miguel Laguna
Ana Piera
Giacomo Moro
Jaume Llados
Raquel Muñoz
Helena Franquet
Josep Sanchis
Ma Rosa Boleda

THANK YOU! Questions & comments?

https://www.upwater.eu/technologies

Ceramic Passive Sampler (CPS)

The CPS is a passive-sampling device that enables continuous detection of organic pollutants in water. It transitions monitoring from periodic snapshots to ongoing data collection, capturing subtle contamination signals with higher resolution and cost-efficiency. For mor information, see the posters on CPS or visit the website of AWA Monitoring.

awamonitoring.com

Your partner in water sampling and analytical methods for easy, accurate, and cost-effective monitoring of organic contaminants

linkedin.com/company/awamonitoring

