

Climate Change & Water Sector

Albert Nardi | albert.nardi@amphos21.com

2nd December 2024

www.amphos21.com

www.rskgroup.com/rsk-businesses/

Risks are increasing with every increment of warming

Excerpt from SYR Figure SPM.4 (a), Global Reasons for Concern (RFC), comparing AR6 (thick embers) and AR5 (thin embers) assessments. Risk transitions have generally shifted towards lower temperatures with updated scientific understanding.

© IPCC

2 min Climate Change Recap

- (Until now) climate models have predicted quite well climate evolution.
- First climate change effects have arrived.
- Uncertainty: Climate Models show different predictions according to different emission scenarios.
- Climate change has become an important issue for more and more people.
- Climate change laws and policies are here, and more are expected.
- Climate change effects may vary for different locations

Climate Change & Water

So, what to do from a Water Utility perspective?

TCFD

The Task Force on Climate-related Financial Disclosures, or TCFD, is a global organization formed to develop a set of recommended climate-related disclosures that companies and financial institutions can use to better inform investors, shareholders and the public of their climate-related financial risks.

TCFD

Sanderson, H., Irato, D.M., Cerezo, N.P. et al. How do climate risks affect corporations and how could they address these risks?. SN Appl. Sci. 1, 1720 (2019). https://doi.org/10.1007/s42452-019-1725-4

1725-4

• Physical Risks evaluation

• Time Series Uplifting

Physical Risks evaluation

Climate Risks

LIABILITY RISK

Risks from those seeking compensation from financial institutions which are held responsible for loss and damage related to climate change.

TRANSITION RISK |

Risks to business related to the transition to a low-carbon economy.

Policy + legal risks: Risks from new regulations designed to curb GHG emissions.

Technology risks: Risks from the replacement of old technologies with new lower-carbon alternatives.

Market risks: Risks related to shifts in supply and demand and the emergence of new markets.

REPUTATIONAL RISK

Risks from an altered perception of businesses based on their contribution to climate change and environmental degradation.

PHYSICAL RISK

Impacts of climate change on our physical environment, including acute and chronic changes.

Acute physical risks: Increasing frequency of extreme weather events, such as hurricanes and floods.

Chronic physical risks: Progressive shifts in climate and weather, such as changes in annual rainfall, frequency of heatwaves, water availability and rising sea level.

Understanding the dynamic nature of risk in climate change assessments—A new starting point for discussion. 2020. David Viner, Marie Ekstrom, Margot Hulbert, Nicolle K. Warner, Anita Wreford, Zinta Zommers

	Institution	CMIP5 models	CMIP6 models
	BCC Beijing Normal University CMCC	BCC-CSM1.1 (Wu and Xin 2015b) BCC-CSM1.1(m) (Wu and Xin 2015a) BNU-ESM (Ji et al. 2015) CMCC-CESM (CMCC 2013a)	BCC-CSM2-MR (Wu et al. 2018) BCC-ESM1 (Zhang et al. 2018)
Model	CNRM-CERFACS	CMCC-CM (Scoccimarro and Gualdi 2014) CMCC-CMS (CMCC 2013b)	CNRM-CM6.1*(Voldoire 2018)
Institutions &	CSIRO	ACCESS1.0 (Bi et al. 2016a) ACCESS1.3 (Bi et al. 2016b)	ACCESS-CM2 (Dix et al. 2019) ACCESS-FSM1.5 (Ziehn et al. 2019)
Versions	E3SM-Project		E3SM-1.0 (Bader et al. 2018) E3SM-1.1 (Bader et al. 2019)
	EC-Earth-Consortium		EC-Earth (EC-Earth Consortium 2019a) EC-Earth-Veg (EC-Earth Consortium 2019b)
	HAMMOZ Consortium IPSL	IPSL-CM5A-LR (Caubel et al. 2016) IPSL-CM5A-MR (Foujols et al. 2016)	MPI-ESM-1.2-HAM (Neubauer et al. 2019) IPSL-CM6A-LR (Boucher et al. 2018)
	MIROC	IPSL-CM5B-LR (Fairhead et al. 2016) MIROC4h (AORI et al. 2015) MIROC-ESM (JAMSTEC et al. 2015b) MIROC-ESM-CHEM (JAMSTEC et al. 2015a)	
	Met Office Hadley Centre		HadGEM3-GC31-LL (Ridley et al. 2018) UKESM1.0-LL*(Tang et al. 2019)
	MPI-M	MPI-ESM-LR (Giorgetta et al. 2012a) MPI-ESM-MR (Giorgetta et al. 2012b) MPI-ESM-P (Jungclaus et al. 2012)	MPI-ESM1.2-LR (Wieners et al. 2019) MPI-ESM1.2-HR (Jungclaus et al. 2019)
	NASA-GISS		GISS-E2.1-G (NASA GISS 2018) GISS-E2.1-G-CC (NASA GISS 2019)
	NCC	NorESM1-M (Bentsen et al. 2011) NorESM1-ME (Tjiputra et al. 2012)	
	NOAA-GFDL	GFDL-CM3 (Horowitz et al. 2014) GFDL-ESM2G (Dunne et al. 2014a) GFDL-ESM2M (Dunne et al. 2014b)	GFDL-CM4 (Guo et al. 2018)
www.amphos21.com	Total	22	19

CMIP5 and CMIP6

Model Data Sources

Global Data Providers

https://www.nccs.nasa.gov/services/data -collections/land-based-products/nexgddp-cmip6

https://www.metoffice.gov.uk/re search/approach/collaboration/u kcp

Local Entities

https://climate.copernicus.eu/

Government of Canada

nττps://open.canada.c a/data/en/dataset

Climate Scenarios

(2.6, 4.5, 6, and 8.5 W/m², respectively) are possible range of radiative forcing values in the year 2100 $\,$

MAIN VARIABLES										
Name	Uni	ts Descri	ption							Model Output Variables
Air temperature	К	Near-surface relative hum	idity	%	Amount of moistu amount of moistu location.	re in the air nea re that could ex	ir the sur ist in the] face divided by the max air at a specific tempera	imum ature and	
Capacity of soil to store water (field	kg m ⁻²	Near-surface specific hum	e idity	Dimensionless	Sea-ice area percentage on	96	Area of t	he sea surface occupied l	by sea ice.	
capacity)		Near-surface	e wind	m s ⁻¹	ocean grid			9 B		
Daily maximum near-surface air	K	speed		-1	Snow depth	m	Mean th	ickness of snow.		
temperature		Northward n surface wind	lear-	m s'	Snowfall flux	kg m ⁻² s ⁻¹	Mass of	Surface upwelling	W m ⁻²	Radiative longwave flux of energy from the surface per unit area.
Daily minimum	К	Percentage o	of the	%	Specific humidity	Dimensionless	Amount location.	longwave radiation		
temperature		grid cell occu	pied		Surface air	Pa	The pres	Surface upwelling	W m ⁻²	Radiative longwave flux of energy from the surface per unit area.
Eastward near- surface wind	m s ⁻¹	lakes	aing		pressure		atmosph vertically	, radiation		
Eastward wind	m s ⁻¹	- Precipitation		kg m*² s*1	Surface altitude	m	The heig	. TOA incident shortwave radiation	W m ⁻²	Incoming solar radiation received from the Sun, at the top of the atmosphere.
Evaporation including sublimation and	kg m ⁻² s	Relative hum	vidity	06	Surface downward eastward wind	Pa	Eastward the surfa	TOA outgoing longwave radiation	W m ⁻²	Longwave radiation from the top of the atmosphere to space per unit area.
transpiration		Relative Hull	indity	70	Surface downward	Pa	Northwa	TOA outgoing	W m ⁻²	Shortwave radiation from the top of the atmosphere to space per unit area.
Grid-cell area for	m ²	Sea area percentage		%	stress		the surfa	radiation		
ocean variables	96	Sea ice thick	ness	m Pa	Surface downwelling longwave radiation	W m ⁻²	Radiative	Total cloud cover percentage	Dimensionless	Fraction of horizontal area occupied by clouds as seen from the surface to the top of the atmosphere in the whole atmosphere column.
percentage Moisture in upper	kg m ⁻²				Surface downwelling	W m ⁻²	Radiative	Total runoff	kg m ⁻² s ⁻¹	Amount per unit area of surface and subsurface liquid water which drains from land.
portion of soil					radiation					
Near-Surface air temperature	К	Sea surface l above geoid	neight	m	Surface snow amount	kg m ⁻²	Snow an canopy,	nount on the ground, exc per unit area.	luding that on the p	lant or vegetation
		Sea surface s	alinity	PSU	Surface temperature	к	Tempera above or	ture at the interface (not below) between air and	the bulk temperatu sea for open-sea re	ure of the medium gions.
		Sea surface temperature		К	Surface temperature of sea	К	Tempera medium	ature that exists at the int which may be air or snow	erface of the sea-ice v.	e and the overlying
ww.amphos21.c	om				Surface upward latent heat flux	W m ⁻²	Flux per evaporat downwa	unit area of heat between tion including sublimatior rd).	n the surface and th n. Positive when dire	ne air on account of ected upward (negative

Downscaling and Biased Corrected

González-Aparicio, Iratxe. (2015). Meteorological data for RES-E integration studies - State of the art reviewtitle. 10.2790/349276.

Spatial Granularity

CMIP5	Resolutions (Latitude × Longitude)	CMIP6	Resolutions (Latitude × Longitude)
ACCESS1-0	1.25×1.875	AWI-CM-1-1-MR	0.9375×0.9375
ACCESS1-3	1.25×1.875	BCC-CSM2-MR	1.125×1.125
CMCC-CMS	3.7111×3.75	BCC-ESM1	2.8125×2.8125
CNRM-CM5	1.4008×1.40625	CAMS-CSM1-0	1.125×1.125
CanESM2	2.7906×2.8125	CESM2	0.9375×1.25
GFDL-ESM2G	2.0225 × 2	CESM2-WACCM	0.9375×1.25
GFDL-ESM2M	2.0225×2	CIESM	0.9375×1.25
GISS-E2-H	2×2.5	CMCC-CM2-SR5	0.9375×1.25
GISS-E2-R	2×2.5	CanESM5	2.8125×2.8125
HadGEM2-AO	1.25×1.875	E3SM-1-1	1×1
HadGEM2-CC	1.25×1.875	EC-EARTH3	0.703125×0.703125
HadGEM2-ES	1.25×1.875	EC-EARTH3-VEG	0.703125×0.703125
INM-CM4	1.5×2	FGOALS-f3-L	1×1.25
IPSL-CM5A-LR	1.8947×3.75	FIO-ESM-2-0	0.9375×1.25
IPSL-CM5A-MR	1.2676×2.5	GFDL-CM4	1×1.25
IPSL-CM5B-LR	1.8947×3.75	GFDL-ESM4	1×1.25
MIROC5	1.4008×1.40625	GISS-E2-1-G	2×2.5
MIROC-ESM	2.7906×2.8125	INM-CM4-8	1.5×2
MIROC-ESM-CHEM	2.7906×2.8125	INM-CM5-0	1.5×2
MPI-ESM-LR	1.8653×1.875	IPSL-CM6A-LR	1.25×2.5
MPI-ESM-MR	1.8653×1.875	KACE-1-0-G	1.25×1.875
MRI-CGCM3	1.12148×1.125	MIROC6	1.40625×1.40625
NorESM1-ME	1.8947×2.5	MRI-ESM2-0	1.125×1.125
NorESM1-M	1.8947×2.5	NorESM2-MM	0.9375×1.25
		SAM0-UNICON	0.9375×1.25
		TaiESM1	0.9375×1.25
		UKESM1-0-LL	1.25×1.875

Time Granularity

From 3hr, 6hr, 12hr, to 24hr

Pixel / Site information

https://escenarios.adaptecca.es

Ensemble & Uncertainty

Escenarios AdapteCCa - Temperatura máxima - Datos en rejilla ajustados (media) - RCP 8.5 - Año completo - 81-49

MOHC-HadGEM2-ES_r1i1p1_KNMI-RACMO22E_v2: 23.88grados

https://escenarios.adaptecca.es

Scenario & Period

Escenarios AdapteCCa - Temperatura máxima - Datos en rejilla ajustados (media) - RCP 8.5 - Año completo - 81-49

Weather & Climate

	Climate
01	The weather pattern of a particular price over a long period.
02	Measured over a long period of time.
03	Affected by the climate system as well as altitude and latitude.
04	Forecasted by collective weather statics over a long period of time.
	01 02 03 04

www.pediaa.com

Climate Impact Drivers

- Climate Variables that are related to hazards
- Some variables correlate better with hazards but not always are available

Climate Impact Drivers

Hazard	CID	Large decrease	Decrease	Non-significant	Increase	Large increase	Correlatio	n Weight
Mean temperature	Near surface air temperature	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	100%
	Tropical nights	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	33%
Extreme heat	Summer days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	33%
	Daily maximum near surface air temperature	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	33%
Cold spell and frost	Frost days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	50%
	Ice days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	50%
Mean precipitation	Annual precitpitation	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	100%
	Maximum 1 day precipitation	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	40%
Floods	Maximum 5 day precipitation	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	40%
noous	Heavy precipitation days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	10%
	Very heavy precipitation days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	10%
	Maximum 1 day precipitation	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	40%
Landslide	Maximum 5 day precipitation	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	40%
	Heavy precipitation days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	10%
	Very heavy precipitation days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	10%
Aridity	Aridity index	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	50%
	Consecutive dry days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	50%
Drought	Consecutive dry days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	50%
	Number of wet days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	-	50%
	Consecutive dry days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	33%
Wildfire	Number of wet days	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	-	33%
	Near surface wind speed	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	33%
Coastal flood	Relative sea level rise	< -0.5	-0.5<0.1	-0.1<0.1	0.1<0.5	>0.5	+	100%
Wind-related	Near surface wind speed	< -10%	-10%<-5%	-5%<5%	5%<10%	>10%	+	100%
	CID score value	-2	-1	0	1	2		

Hazard Scoring

Climate Impact-Driver (chart link)	Historical	2030 2.6 - impact on	2030 8.5 - impact on	2050 2.6 - impact on bazard	2050 8.5 - impact on hazard	Source
Heavy precipitation days	21.5 days	Increase (8.3%)	No Change (-3.0%)	Decrease (-8.0%)	Decrease (-7.5%)	CEI
Maximum 1 day precipitation	77.8 mm	Decrease (-9.0%)	Large Increase (23.3%)	No Change (-3.7%)	No Change (2.6%)	CEI
Maximum 5 day precipitation	112.6 mm	Increase (5.8%)	Large Increase (18.7%)	No Change (0.1%)	Large Increase (13.1%)	CEI
Very heavy precipitation days	9.5 days	Increase (7.9%)	Large Decrease (-11.8%)	Large Decrease (-12.2%)	No Change (-4.8%)	CEI

$$ext{hazard score} = \sum_{i=0}^{N_{ ext{CID}}} ext{CIDscore}_i \cdot ext{Correlation}_i \cdot ext{Weight}_i$$

,								
Hazard	2030 2.6 - Estimated Physical Risk Change	2030 8.5 - Estimated Physical Risk Change	2050 2.6 - Estimated Physical Risk Change	2050 8.5 - Estimated Physical Risk Change				
Extreme heat	Large Increase	Large Increase	Large Increase	Large Increase				
Cold spell and frost	No Relevant	No Relevant	No Relevant	No Relevant				
Floods	No Change	Increase	No Change	Increase				
Landslide	No Change	Increase	No Change	Increase				
Aridity	No Change	Increase	Large Increase	Large Increase				
Drought	No Change	Increase	Large Increase	Large Increase				
Wildfire	No Change	Increase	Increase	Increase				
Coastal flood	Increase	Increase	Increase	Increase				
Wind	No Change	No Change	No Change	No Change				

Table 15 Summary of acute climate hazards change for 2030 and 2050

Complete Business Hazard Assessment

Physical Hazard Report Example

https://climatechangeimpact.amphos21.com/

T	able 45 Sites hazard overview	at 2050 for RCP8.5	
Hazard	Amphos 21 Barcelona	Amphos 21 Chile	Amphos 21 Peru
Extreme heat	Large Increase	Increase	Large Increase
Cold spell and frost	No Relevant	Large Decrease	No Change
Floods	Increase	Large Increase	Large Increase
Landslide	Increase	Large Increase	Large Increase
Aridity	Large Increase	Decrease	Decrease
Drought	Large Increase	No Change	Decrease
Wildfire	Increase	No Change	Decrease
Coastal flood	Increase	No Relevant	No Relevant
Wind	No Change	No Change	No Change

Time Series Uplifting

Climate Data for Simulation Models

Perturbating 5 min local series data to fit to projected precipitation patterns.

Climate Change Data for Simulation Models

Perturbating 5 min local series data to fit to projected precipitation patterns.

Climate Change for Simulation Models

Using Climate Precipitation Time Series as input for Hydro(geo)logical studies

Irish Water

National level climate and risk and vulnerability assessment

RSK are currently working with Irish Water to deliver a physical climate change risk and resilience assessment of their most critical sites and networks across the country. As a key utility owner and operator, there are a number of major risks relating to both chronic and acute changes in the Earth's climate. The purpose of this project is to understand those risks under various scenarios including a reasonable worst-case scenario (SSP5-8.5) and a medium- (2040-2059) and long-term time horizon (2080-2099) so that appropriate adaptation options and pathways can be developed and fed into the Irish Water investment planning process. The project has four core stages. These are:

- 1. Climate Data Aggregation and Reporting (incl. site visits)
- 2. Climate Statistics modelling timeseries data at local level

- Climate Risk and Resilience Assessment an initial screening exercise (using World Bank Data) to identify 50 priority sites, followed by a detailed risk and resilience assessment at a local level.
- Identify, assess and prioritise site specific and organisation (including customers/community) adaptation options.

Stakeholder engagement is a key driver to the success of this project. This includes both internal (e.g., asset planning and operations) and external (e.g., Met Eirean, University of Maynooth) stakeholders which have, and will continue to be, engaged with to ensure all risks and opportunities are aligned with site needs and organisation and national strategic direction. The project is due for completion at the end of 2023.

AMPHOS²¹ an **RSK** company

Ă

ESPAÑA C. Venecuela, 103, 2ª planta 08019 Barcelona Tel.: +34 93 583 05 00

Paseo de la Castellana 40, 8ª Planta 28046 Madrid Tel.: +34 620634729

CHILE

Avda. Nueva Tajamar, 481 WTC - Torre Sur - Of 1005 Las Condes, Santiago Tel.: +562 2 7991630

PERÚ

Av. Primavera 785, Int. 201, Urb. Chacarilla - San Borja Lima 41 Tel.: +51 1 592 1275

